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[ What tokamaks try to optimize?

Goal of a fusion reactor, e.g. ITER is to maximize fusion power output

Fusion power density in a 50-50 DT plasma : ny: D density, n: T density
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Remember plasmabeta b=

COMPASS-D

Thus total fusion output: Py, <p?>V o 2B4V | o
Global Energy Confinement Time of ELMy H-mode IPB98(y,2)
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Both fusion power output and confinement time has strong dependence on B, R, p, and |,

Ultimately it aims at optimizing the Lawson Parameter: nTerE
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@ Operational Limits on Plasma Density

Hugill diagram: 1/q, vs. Murakami parameter (nR,/B-)
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Low g, limit is a limit on the plasma
current. Higher current destabilizes
external kink modes — results in plasma
disruptions

low density limit is due to generation of
runaway currents: too low densities 2>
less collisions = electron get accelerated
to very high (relativistic) energies

High density limit: Greenwald/Hugill
density limit is a radiation limit. Too high
densities—> less edge Te = high impurity
radiation from plasma edge, formation of
MARFEs - results in plasma disruptions.
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@ Operational Limits on Plasma Density

Hugill diagram: 1/q, vs. Murakami parameter (nR,/B-)
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Ii Operational Limits on Plasma Density

Hugill diagram: 1/q, vs. Murakami parameter (nR,/B-)
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Greenwald limiting density has a simple
expression:

I (MA
nGW(lozom'B):—p( )

pa’(m)

High density limit can be enhanced with
improved wall conditioning and plasma
heating



Il Operational Limit on Plasma Beta

« The limit on the maximum achievable plasma 5 comes from the stability of the

ballooning modes in a tokamak 7
* For circular plasmas, S is given by the Troyon Limit*: 6 =2.8—£-
12 T T T T T 7 aBt
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@ Parameters to Optimize in a Burning Plasma

Confinement improvement by improved Hgg, = Te/T=-W

Improved fusion performance by as high B, as permitted by MHD
stability

Improved normalized density : n./ngy,

Improved radiation fraction : f,, =P, .4/P s 1ot fOr l€ss thermal
power load to divertors

Fuel dilution control through control of He ash and maintaining

for = Np/N; ot

High non-inductive current drive fraction fy, essential for steady-
state operations
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Ii Bootstrap Currents in High Beta Plasmas

Bootstrap currents are self driven currents due to interplay of
‘banana’ trapped particles and untrapped particles

High bootstrap current fraction fgg essential for steady-state
operations.

Remember Jas ™ \@idp , thus depends on pressure profile
B dr

q
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Equilibrium
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Particles execute banana orbits in Normalizes poloical fu,
tokamaks in collisionless plasmas
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@ TER-India Control of RWMs and ELMSs

* Resistive Wall Modes (RWMs) : Plasmas with high £, high bootstrap fraction f;s and low
internal inductance |, are prone to be unstable to external kink modes, which grow with the
characteristic wall time, t,,~L/R time of the first wall. Plasma rotation and error field
compensation — both static and and active feedback needed to stabilize RWMs.

« Edge Localized Modes (ELMs) : Driven by
steep pedestal pressure in the H-mode plasmas
due to peeling/ballooning modes. Active
feedback with resonant magnetic perturbations ‘

\ 1

needed to control ELMSs.
« RWM and ELM stabilization has been
extensively studied in the DII1-D tokamak

* ITER will have an elaborate set of 9x3=27 ELM
control coils with independent power supplies and
6x3=18 error field correction coils with 9
independe_nt power supplies (DC). Radial ELM ITER Correction Coils (out-vessel)
control coils also double up for RWM control and (in-vessel
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@ Multi Parameter Spider Plot for Scenario Control
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éi Actuators for Scenario Control & Constraints

Actuators Constraints

Magnetic Control Central Solenoid Voltage and current saturation
limits, total flux storage (especially

for CS), slew rate limits, J x B forces
Error Field correction coils on coils etc.

for control of RWMs

PF coils

ELM control coils

Kinetic Control Fueling — gas puff, pellet Fueling, heating and CD efficiencies,
fueling, NBI power and current deposition
profiles, resonance layer or RF
waves, NB shine-through, various
technical limits with injectors

Heating and Current Drive
using NB, ECRF, ICRF, LH
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@ Operation Space of ITER Inductive Scenario

ITER operational space
diagram for advanced
inductive operation at the
nominal ITER toroidal field of B
=5.3 Twith P, =50 MW

Ratio of the power loss across
the separatrix to the predicted
L—H threshold power

Performance Ratios

Ratio of calculated confinement

time to the H-mode scaling 0 [ P R P S R
10 11 12 13 14 15

Ratio of the plasma electron Ip(MA)

density to the Greenwald density T. Luce et al, NF, 54 (2014) 013015.

Also in ITER Research Plan.
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| WTER-India

ITER 15MA Q=10 Inductive Scenario
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« DINA simulation of 15 MA inductive scenario with low-l; and anti-saturation
controller:

— Without anti-saturation, field on PF6 rises to 6.8 T (needs Pf6 subcooling by 0.4K)
— With anti-saturation, field on PF6 remains < 6.4 T (no Pf6 subcooling needed)
— Acceptable error on position of outer divertor leg (gap-2 - inset)
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| RAITER-India

- Long-pulse operation (Q > 5, At > 1000 s)
in ITER at high currents (I, >13MA) does not
require too high confinement (Hgg,, ~1)

- Increase of the pulse length, At > 1000 s,
IS possible due to reduction of plasma
density

- Following increase of electron
temperature T,, CD efficiency also improves

- No significant change in transport
properties
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ITER Steady-state Scenario
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Ii Simulations of ITER non-Inductive Scenarios

Table 3. Fully non-inductive ITER operation scenarios developed using METIS. The plasma current was allowed to vary to
find a fully non-inductive plasma state at an assumed Hog value in the range of 1.2—1.6. The plasma density was assumed to
be below the Greenwald density limit and a density profile peaking factor of 1.3 was used in all cases.

Case Pxp [MW] Pgc [MW] Pic [MW] Py [MW] Payw [MW]  Heg [, [MA] QO few  fn1 o Bn

1 33 20 20 0 73 1.6 1.5 3.7 0.90 1 2.8
2 33 20 20 0 73 1.2 5.9 1.3 0.85 1 1.9
3 33 20 0 20 73 1.6 9.1 4.9 0.93 1 2.8
+ 33 20 0 20 73 1.2 7.4 1.7 0.91 1 1.8
5 33 40 0 0 73 1.6 8.2 4.1 0.95 1 2.8
6 33 40 0 0 73 1.2 6.6 1.2 0.89 1 1.8
7 49.5 20 0 0 69.5 1.6 8.5 4.7 0.91 1 2.9
8 49.5 20 0 0 69.5 1.2 7.0 1.6 0.84 1 1.9
9 49.5 40 0 0 89.5 1.6 10.1 5.3 0.84 1 3.4
10 49.5 40 0 0 89.5 1.5 9.2 4.3 0.92 1 3.0
11 49.5 40 0 0 89.5 1.4 8.6 3.0 0.90 1 2.6
12 49.5 40 0 0 89.5 1.2 7.9 1.8 0.85 1 2.0

S.H. Kim et al 2021 Nucl. Fusion 61 076004
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ITER-India

ITER Steady-State Scenarlos...(l)
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CORSICA Simulations of fully non-inductive operation scenario for [p=10MA with
49.5MW NB and 20MW EC power

S.H. Kim et al 2021 Nucl. Fusion 61 076004
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[fien-nicl | TER Steady-State Scenarios...(2)

R.Force Lim. {

N.Force Lim.1
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CS Coil currents [MA]
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Note that all the CS and PF coil currents, Voltages, Fields and Forces are within the
allowable limits

S.H. Kim et al 2021 Nucl. Fusion 61 076004
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@ ITER-India

60 s rampup TSC
15{} § rampup (b) with CS3L constraint
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Operating space in Hybrid Scenario
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- Equilibrium operating space for hybrid scenario at I, = 12.5 MA shows
additional constraint on |55 Ccan expand operating space at low-I,
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revvied _ Summary

* Parameter Optimization for various operation scenarios is a
complex problem

e Often the parameters fight against each other for achieving
ultimate goal of fusion performance — detailed analysis of
comparative benefits needs to be done using scenario
simulations

* Open field of research through integrated modeling,
experiments and analysis of experimental data

* ITER, JT-60SA and existing machines like DIlI-D, KSTAR & EAST
are great platforms for scenario control, modeling and
optimization studies
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Thank Youl!
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